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ABSTRACTr

A group theoretic algorithm for the integer program has been computer

programmed and tested. It basically consists of a linear programming algo-

rithm, a routine which converts the (relaxed) integer program to a group mini-

"mization problem (over the fractional column group or the isomorphic factor

group attained via Smith's Normal Form), solving the group problem by dynamic

!T programming or by a shortest path algorithm, and when necessary, uses a branch

and bound procedure. Details and computational results are given. Future.

work regarding other computational strategies available to group theoretic

~ [ algorithms is also included.

........
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1. INTRODUCTION

In 1960 Ralph Gomory [Gl] indicated that the coefficient vectors of the

, iin---aalities derived in his dual fractional algorithm form an abellan group,

which can have at most D elements, where D is the absolute value of the deter-

minant of the current linear programming basis. Based on these results Gomory

[G2] in 1965 showed that by relaxing nonnegativity, but not integrality constraints

w ;on certain variables, an integer program may be transformed to one whose columns

of constraint coefficients, and the right hand side are elements of an abelian

group. If this group problem is solved and its solution yields nonnegative

values for the variables of the original problem, then the integer program has

been solved. The group problem can be treated as an integer program with one

"constraint (i.e., a knapsack problem) or as a network problem, where a shortest

route is desired. In this paper, we will discuss solution strategies for the

group minimization problem . Some computational experience will 'e presented.

Future work, now being developed, will also be mentioed.

Consider the integer program

PI maximize cx

- subject to Ax b

"x > 0 and integer,

where A = (A;I) (i.e., original problem is of the form A'x'< b) is an m by

m + n matrix whose rank is ii, I is an m identity matrix, c - (c', 0), and

x = (x', s'), where s are slack variables. Now suppose B is a basis whose

columns are from A, and that we rearrange the terms in the previous problem

so that it is the same as

17
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P2 maximize CBXB + CNXN

subject to B xB + N xN b

B 0, xN > 0 and integer,

j where xB (xN) are the basic (nonbas..c) variables associated with B (N), and the

costs corresponding to the basic (nonbasic) variables are cB (CN). Using the

integrality of xB we get the equivalent problem P3.

P3 maximize cBBb - (cB N- c
B B CN)XN

subject to B-N xN -1B-b (mod 1)

YN >0, integer

and XB B b -b 1 lNKN

Suppose that we choose a basis B which yields a dual feasible solution, that is

ci. = c N - cN > 0; for exauple, the optimal linear programming basis may be

selected. Dropping the constant term cBB b, converting the problem into

minimization format, and omitting the nonnegativity requirements xB, yields

P4 minimize c XN

subject to B-N xN B b (mod 1)

and xN >0, integer.

This problem is equivalent to

n
P5(GP) minimize c x

c. XJO.)

n
subject to (m x a (mod 1) (1)

J. J J(j) 0

XJ(j) > 0 and integer (1=i, ... ,n),

where c = (c1) > 0, column • (j 0, ... , n) is the fractional parts of the

I,



:h column of B'IN and satisfies 0 _ e (a column of ones), and x- (Xj(j))

is the j (1 j- j < n) nonbasic variable. Problem P5 is referred to as the group

, j minimization problem (GMP) over the fractional column group.

Denote the set of vectors generated by repeated additions (modulo 1)

of the n ax s in P5 as G(3). Then it can be shown (Sl], either G(;) is a

cyclic group or it can be expressed as a direct sum of cyclic subgroups. More-

over, the order of G(3) equals D or it divides D. Also, it equals D whenever

A contains an identity matrix.

To solve GMP, we can think of the equalities (1) as one constraint and

apply a dynamic progranmning procedure. In particular, for k 1 1, ... , n let

k
f(k,g) minimizec

ii CjXJ(j)

ii:. k
subject to X XJ(j) g (mod 1)

: ~~xj(j) 2_0 and integer (J=l, Q..k.l

That is, f(k,g) is the minimal value of the objective function to the GNP using

the first k variables and with right hand side ao replaced by g, and f(n, 0)

is the value of the minimal solution to the GMP. The recursive relationship (2)

allows us to compute f(k,g) for all k 1 1, ... , n and g in G(c) pro,'ided that

"every ak generates the group G(3).

f(k,g) = minimum {f(k-l,g), c + f(k,g-•)} (2)

To retrieve the solution, we define J(k,g) to be the index of the last variable

used in making up f(k,g). Thus, j(l,g) = 1 for all g and for k > 2 define
j(k,g) j(k-l,g) if x (k) = 0 or f(k,g) = f(k-l,g)

and J(k,g) -- k if XJ(k) > 1 or f(k,g) = ck + f(k,g-ak).

If each a does not generate the group G(a), we may use a modified pro--

cedure suggested by T.C. flu (Hi]. In particular, suppose (k > 2) generates a

I



5 subgroup G(;k) of order d < D. Expression (2) will give f(k, 03k) for

- l,...,d, but suppose we need f(k,g) for an element g which is not in

I G(; k). We have the value of f(k-l,g), and need the value of f(k,g-;) to

calculate f(k,g). So, we temporarily assume that f(kg - f(k-l,g-ck),a

which is, at worst, an overestimate. Note that f(k-l,g-k is known. We use

_I the following modified recursive relationship.

f(k,g + 13; minimum {f(k-l,g + ), + f(kg k (3)

known tentatively estimated

Starting with 1 = 1, we obtain a new estimate for f(k,g) when 8 - d, and if

this value agrees with the original one it can be shown to be the correct

value ([Sl]). If it differs, the process continues. This process converges

to the correkt value sometime between step d and step 2d inclusively.

If the optimal solution, XN, for thn group minimization problem yieldsNi

Snonnegative basic variables, xB, then (xB,xN) is an optimal 3olution to the

original IP problem. Specifically, given the solution for GMW, xN, if

SB B-b B N xN> 0"

then we have solved the IP problem. If, on the o :-Br hand, one or more of the

basic variables turns out to be negative, we have to seek the smallest value

of cx,, for which xE > 0 and x. satisfies the constraints of the GMP.

thWhite [WI] developed an algorithm to find the k best solution to the

group problem using a set of recursive relationships. This is rather compli-

cated and difficult to implement. Instead of White's approach, we use

a branch and bound enumeration which is similar to the Dakin [Dl] variation.

The scheme presented here inspects the integer solutions to the group problem

by successively adding constraints of the form xj,(J) > K (j-l, ... , n), where

* K starts at 0 and is increased by 1. In terms of tree, a node corresponds to

' a vector with a greater than or equal to inequality acting on each variable,

a branch to introducing the inequality in such a way that two nodes are joined

iA
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by a branch whenever the inequality acting on one particular variable has been

incremented by 1 and the others are the same. A detailed explanation of the

procedure is in [Si].

Using Smith's Normal Form (SNF) (Hl], [Ml] w,' can construct a different

1,• group minimization problem. In particular, SNF diagonalizes a given m by m

nonsingular integral (basis) matrix B, such that B- RBC, where B is a diagonal

matrix of the form

- (:>2

the c are positive integers (iIl,...,m), i divides e (i-l,...,m-l), and

Idet. RI - Idet. C1 1. This can be used to construct the group minimization

problem (see[Sl])
n -

P6 (FGMP) minimize j cj Xj(j)

J=l

subject to m Xj - modj.1 i (j) o

tt
S~~Xj(j) >0 and integer (j=l, ... ,n,

where X is the jth column of RN with each component i reduced modulo Ei, Xo

is the vector Rb with each element reduced modulo c.i and B RBC. The set G(X)

generated by the X 's (J-1, ... , n) is an abelian group which can be shown to

be isomorphic to G(3). The details are in [Sl].

n
Note that if i 1 X XJ() X (mod ci) is satisfied for any

integer solution. Here Xii is the i element of the j co. -n of RN. .his is

because all elements of the constraint matrix are integer, as well as the right

* .
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t-i

hand side. In this case, the .h congruence equation contains only zeros and

thus can be omitf-ed. This means that aý! rows which have ci-1 can be omitted

from the constraints. We will denote the number of effective rows in FGM.P as

mF, which is m minus the number of rows with c wl. Gorry, Northrup, and

Shapiro [G3] claim that mF is usually 1 to 5 regardless of the value of m.

2. THE GROUP MINIMIZATION ALGORITIHM

The intension of this paper is to expose the efficacy of various existing

40, options. Specifically, we have the three major options in this algorithm listed in

S. Table 1. Moreover, there are many strategies for each option. The natural

I A. Form of the )'roup (1) Regular group mini- (2) Factor group mini-
minimization mization problem mization problem
problem (using fractional (using SNF)

columns

B. How to solve the (1) Dynamic programming (2) Shortest path
group minimization algorithm (DP) algorithm (SP)
problem

C. Pow to solve the (1) Branch (2) Dynamic (3) kth shortest
integer program if and bound program- path algorithm
the group problem ming
does not solve it.

TABLE 1

question Is which of the various possibilities appears to be most efficient.

Some computational work in this direction has already appeared in the literature

([Cl, S3, Wl, G3, G4, G5, H4]). An exposition of that work can he found in [S1].

Table 2 summarizes the strategies used and numerical results. Even though some

studies attempt to compare possible strategies they are, at best, quite incont-

I plete. The work by Gorry, Northrup and Shapiro [G31 is somewhat more extensive,

but the comparisons of various strategies is not included.

I
I!
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3l A computer system with several subroutine options, for solving an integer

program using group minimi7-cion techniques has been developed. The general

procedures of our code appears in Figure 1 and the detailed flow charts or daajor

subprograms are in latar pages. We now discuss the compcsition of the computer

F system. The paranthesized letter adjacent to each heading agrees with Figure 1.

(a) The LP Code

The linear programming algorithm used in this code is a variation of

the revised simplex method applied to the dual. The basis inverse is kept in

product form and a basis reinversion procedure is used to reduce roundoff errors.

The original program was written by Salkin and Spielberg [S2] and was later

modified for and incorporated in the set covering code SCA 1 [S2].

Because it uses the dual method, the algorithm requires dual feasibility.

If the primal is feasible, the solution is optimal. It turns out that a basic

d u adual feasi!,.e solution can always be obtained by using the complementing variables

x. uj - Xj, for those variables with negative costs. Here u1 is an integral

upper bound for x,. Using this technique we can avoid a phase I procedure.

(b) Construction of the Group Problem

This part of the program converts the relaxed integer program to a group

minimization problem. The resulting problem may be either the one over the

fractional column group (GMP)(bl), or the one over the isomorphic factor group

(FGMP)(b3) attained via Smith's normal form (SNF)(b2). More specifically, given

the LP optimal solution GMP converts problem P1 into P5, whereas FGMP converts

P1 into P6 with the diagonalized LP optimal basis matrix produced by SNF.

Clearly it is more time consuming to diagonalize the bit.±s matrix, but

the number of rows of FGMP usually is much less than that of GMP. This allows

a simpler bookkeeping scheme to keep track of the problem and less computer

storage requirements. A trade-off exists between SNF conversion time and the
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(a) LP (linear programming)

LP solution, LP optimal basis

17

(b2) SNF (Smith Normal Form)

Diagnlizd LP optimal basisk j aonaze(bl) GMP (group minimization problem)

S(b3) FGMP (factor group minimization problem)

(cl) DP (dynamic programming)
•: • ( )c SP (shortest path) ,

(c2) SL |solving and backtracking the Group

Backtracking of DP solutions, problem by shortest path algorithm

including alternative optimum

yes

basic variables > 0 (COUrVER)

no

S 0(d2) BANDB (branch and bound) (d2) KSr' (kth

shortest nath)branch and bound enumeration to find thSfinding the kh shortest path such

i a solution with nonnegative values that the basic variables are

"for the basic variables nonnegative

Solution of originalpobleM

FIGTM.S 1: TII11. GT'NERAJ. OUTLINE OF THE~ GROUTP THEORETIC ALGORITHM
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easier handling allowed in the other procedure. The selection of the group is

made by an input parameter.

A flow chart representing the construction of a group problem appears

in Figure 2 and that of constructing SNF iii Figure 3.

(c) Solving the Group Problem

As noted before, GMP or FGMP can be solved by either dynamic programming

or a shortest path algorithm.

(cl) (c2) DP and SQL

The subroutine DP solves the group problem using a dynamic programming

algorithm, whereas subroutine SOL keeps track of the indices of the solution to

the group problem. The main feature of this part of the program is that it can

list as many alternative optimum as computer storage allows. It is desirable

to obtain all optimal solutions to each group problem, because only some of them

may yield nonnegative values for the basic variables. This is equivalent to

recording more than one index, say j(k,g,i), Z-1, ... , z. when ties occur inS~max

computing the minimum in the recursive relationship (2). The current program

is capable of storing up to five indices, i.e., k = 5, for each element of the
max

group. It can be expanded if computer storage allows. If there is more than

•:• .:. £ indices due to ties, a new index will not be stored. In thi S sense, "all"
S~max

-' alternative optimum may not be found. A flow chart representing a general out-

line of the DP algorithm is in Figure 4.

(c3) SPA

This subroutine obtains the network representation of the group problem,

and then uses a shortest path algorithm. Retrieving the values of the solution

is the same as (c2). There are several alternatives for this algorithm. Conven-

tional algorithms are given by Dijkstra [D2], Dantzig [D3], Floyd [Fl], Farbey

et.al.[F2], and Yen [Y1]. Moreover, the resulting network is highly structured,



Results f-rom LPI

i LP otimal basis
D - I basis determinanti ")

"GMP or FGMP

F7M

3. SNF (see Fig. 3)

Construct a group problem

S(J=-, 1, ... , N), C for GM P

Fin X(J1, 1, .. ,N), c for FM

Find zero rows in a group problem

and drop these rows

;• Find duplicate columns and drop the

duplicate columns with higher costs
- ii

Check the order of the subgroup

generated by each column

Arrange the columns so that the

orders of the subgroup generated

by each of them are descending

Go to (C) (See Fig.l)

Solution algorithm for
°t" he group problem

FIGURE 2: GENERIAL FLOW DIAGRA14 OF THE CONSTRUCTION OF A GROUP PROBLEM

I A h v ý , -
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m!q ar'-titrix, 
B'(

L interchange rcws and columns such that b is the element of

smallest absolute val-.e among M I nn'i.ero elements in the mnatrix

2 If b does not divide b for some j k,

)I i

divides the rerkiining no tmsrwIfo

11a hr nnb n od q n subtract rok tmso

ow-.. 1 • el metbl .- 2, '

Scolumn 1 fnd columnc1 el s b sie that b becomes q.

yes
4 ------ est rivow e ta n c lm ng ao ne. e emnp kn k 'I

bl b .and subtract nk times row I subtrsa.

~~s ~ column I endlrom e nt's ro (i=2,.sb..c

tisthat br becomes q.

5 'P•rc Th an ra Add n ro k or wi ch bkl nk Ii + d) i II

i b , From each COI ,AM J(J>2) subtract nI

timos column m and wrom each row i(i>2) subtract

es tmr times row i1b_-

o L rv h1o timms row column 1 chanme changerx

(2 •i ,J~ m) .fram co lumn .I row i
eevvlmnno for which column JI with with -

-j -1 -ljn bll+q. column I row I

• • Bring q into

tile (1,1) -

yen 6ition.

(KtWlt row I and column 1 of this tiatrix (bl Is one

of the dlagonal elements) and consider the (m-l) x (m-I)

;ub ma trix.

yes m m-

m m

no

Mj i o a It 0~ L

FIGURE 3: lL0OZ fTAMRA1 01'il S'"Ih'F CO'1TlhTAT1O!
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e.g., there are as many arcs into a node as there are out of it, and the costs

are also symmetric. This suggests a special purpose procedure should be used

I (see also Chen and Zionts [Cl]). Our SPA program is based on Yen's algorithm

[Y1] as it appears to require the fewest number of computations.

To examine the structure of the network, consider the example below.

Minimize 3 x + 4 x + 5 X

[ +subject toX3 ( (mod 12)

F and xl, x 2 , x3 >0, integer.

The associated D (distance) matrix for this problem appears in Figure 6. Note

that the order of (denoted NO(l)) - 3, NO(2) - NO(3) - 2, and G(cj) • G(3)

- 12 for all J. Then the distance matrix of the network appears as in Figure 5.

Once the distance matrix is constructed, the shortest path algorithm is

~ ""• used. The steps in Yen's shortest path algorithm is described here. We use

the following notation:

i' ! 1 (1), I = 0, D-l; the nodes of the network (Dnodes) where (0) is the

origin.

SI(I), I = 0, 1, ... ,D-l; the node number stored in the I cell of II.

"(I,J), I J J; the directed arcs from (I) to (J).

d = [d(I,J)]; the distance matrix where d(I,J) is the distance of arc (1,J).

V'(I). I = 1, , ... ,D-l; the tentative or permanent shortest distance from

(0) to (M).

Then F(J*)'s, the lengths of shortest paths frow, (0) to each (J), can be obtained

as follows: F
I. Let L = 0, K - D-l, F(O) 0 0, H(1) - I, and F(I) - m for I 1 1, 2, ... ,D-1.

ii. For I - 1, 2, ... ,D-I, do steps A, B, C as follows:

I

II
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A. Let J- H(M).

B. Compute F(J) min [F(J) + d(L, J)1.

C. If the value of F(J), say F(J*), is less than the current minimum during

this execution of step II, replace J* by J and note the corresponding

value of I by setting I* = I.

III. Label L - J* and 'I(!*) H(K).

IV. Let K K-1. If K > 0 go to II; otherwise, if K m 0, stop.

(d) The Case When xB 0

' [L A subroutine CONVER finds the solution to the integer program from the

optimai Rolution to the group problem. If the optimal solution, xN, for the

relax;ed group minimization problem yields nonnegative basic solution, XB then

.(xB, xN is a solution to the original IP problem. If, on the other hand, one

or more of the basic variables turn out to be negative, we have to seek the

-smallest value of cx for which xB > 0 and xN satisfies the constraints of the

group problem. At least three alternatives exist here; namely

(dl) A branch and bound enumeration

(d2) A kt shortest path algorithm

(d3) A modified dynamic programming algorithm.

The current program includes (dl). (d2) is now being incorporated.

(dl) BANDB

A modified dynamic programming algorithm was developed by White [WI]

which seeks the smallest shortest route for which xB > 0. However, this involves

I considerable computations. Instead of using this recursive relationship, we

will introduce a branch and bound enumeration which is similar to the Dakin [Dl]

variation. A flow chart of this subroutine is in Figure 6. Our branching

strategy is to check all branches emanating from a chosen node. For example,

in Figure 7 with 3 nonbasic variables, there exist; three possible branches

leading to k, Z+I, X+2 nodes emanating from node k. All of them are examined.
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Si: As we impose more strict conditions, the feasible region is more restricted,

thus increasing the optimal value of the objective function. The node selection

-t rule is: find the node with the minimum of the optimal linear programming

r , objective values of all dangling nodes. Thi• node is selected as the one from

S• ~which we branch on. Hopefully, it will produce an optimal solution to the group i

; ! problem quickly. In the current version of the program as many as 300 dangling

S~nodes can be stored.

S! 3. COLPUTAT IONAL EXPERIEN4CE

SThe algorithm has been coded in FORTRAN IV and tested on a UNIVAC 1108 zo

-. ~computer at Chi Corporation, Cleveland, Ohio. At this time only rather modesti

sized IBM test problems appearing in Haldi [H2] have been solved. Table 3

gives a detailed summary of running times in seconds for each phase of the

! system. Unfortunately, some I/O time is included.

Table 3 also includes the results of other computational studies, i.e.,

White [Wl] and Shapiro ($3]. White (1966) used an IBM 7094, which is substan-

tially slower than the results using machines such as a UN1VAC 1108 or IBM 360.

Still, it 13 observed, in general, that the shortest path algorithm works

better than the DP algorithm. There is not much difference between Shapiro's
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I results and our results. Exceptions are those requiring branch and bound enu-

meratimo?, for which Shapiro's algorithm works better. Also note that for IBM

I [ test problems no. 1 and no. 2 with D = 32, our DP techntique works faster than

Shapiro's algorithm.

£ 14. SUGGESTED STRATEGIES
Table 4 summarizes some general results and inferences suggested by the

computational results. From these, we can draw at least preliminary conclusions

I as to which form of the group problem should be used, GMP or FGMP, and which

algorithm should be adopted, DP or Network. Generally speaking, for small
Sproblems (i.e., ones with a small number of rows and a small basis determinant

in absolute value), GMP works satisfactorily, but for large problems FGMP is

[ definitely preferred. We elaborate upon this and list our suggested algorithm

V •strategies in Table 5. The reader should realize, however, that these conclu-

sionr are drawn upon very preliminary computations.

Table 5 indicates that:

1) when both m and D are small, any approach should work.

2) when the group is cyclic, the network approach without the SNF (i.e., use

Gr•T) is best, since we otnly have to find nk such that gk- nk gl' where g,

generates the group. The SNF is worse when the nwiber of nonbasic variables,

that is, the number of indices k, is small. Thus, we feel GMP/NETWORK is

better than FGMP/NETWORK, when the group is cyclic.

3) when the group is not cyclic, the network approach with SNF is usually best,

since the SNF can be used to find tne number of cyclic subgroups which

generates the group. Elements which generate the group can be used to find

theentire network.

DP Algorithm and the SPA Algorithm

It will be clear from Table 3 that, generally speaking, SPA works from

1 5 to 10 times faster than DP. This trend is much clearer as D increases. For

bi}
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L=

GMP FGMP

S Dynamic . No SNF conversion time is required. . Since the number of rows in FGMP,
program- . This will probably be inefficient mF., is usually of the order of 1
m ming especially with D large, because to 5 regardless of the value of m

of the number of states (i.e., D). this will be more efficient than
This will require more memory. the GMP/DP strategy, especially in

large (many row problems.
Generally the network algorithm will
work better.

Network . This should work well for small . This is the most popular, and prob-
S(in number of rows and/or the size ably most efficient strategy.

D) problems at the cost of more . This should work well for larger
memory requirements for the dis- problems.
tance matrix. . Both SNF conversion time and network

. After converted into a network, the representation time are required.
group of elements are not carried
over to the network optimization.

I . No SNF time is required.

* " TABLE 4: SOME GENERAL INFERENCES

example, see the computations with the Holdi No. 2 problem (Df-258). The differ-

ence in time is directly attributed to the difference of DP and SPA time. Even

though the values for D are rather small in the problems treated here, SPA seems

to be more advantageous. Moreover, SPA requires substantially less computer

memory requirements. This is because SPA does not carry the aj or Xj columns

during the network optimizations, since these coefficient columns correspond to

group elements and, hence, nodes (see Salkin [Sl]).

S~ GNP and FGMP

For the rather small problems solved, the results indicate that diagon-

"alization of the (LP optimal) basis via Smith's Normal Form is not preferable.

This may be partially because our computer subroutine representing the SNF

conversion is not written well. But, on the other hand, it is intuitively

clear that for small (especially in the number of row) problems, diagonalization

does not speed up computation time. This will not be the case for larger (in

1!
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SSmall Large

"1. GMP/NETWORK** 1. FGMP/NETWORK
2. GMP/DP Group cyclic or

Group cyclic or not cyclic• I not cyclic

1. GMP/NETWORK 1. GMP/NETWORK
Group cyclic Group cyclic

Large i. FGMP/NETWORK 2. FGMP/NETWORK
Group not cyclic Group not cyclic

Group cyclic

*1. first choice, 2. second choiceJ **GMP/NETWORK stands for solving GMP by the network approach.
Others should be interpreted similarly.

TABLE 5: SUGGESTED STRATEGIES*

terms of rows and the value of D) problems. Yurther investigation will be

4 j needed to conclude under what conditions which is better.!

5. FUTURE WORK

Detailed comparisons of our computational results with others indicates

that further improvement of the program will be possible in the following

subroutines. These minor changes should make the system more efficient.
1) Smith Normal Form

The current subroutine used to obtain the Smith Normal Form is based on the

work in Hu [Ill). This subroutine is in a preliminary form and should be

refined. Another approach, given by D.A. Smith [S6], is being examined. A

2) Branch and Bound Enumeration

Our current subroutine containing the branch and bound enumeration is

rather primitive. This is especially true for both node and branch selec-

tion rules. This subroutine will become very inefficient as D increases.

Modifications are being incorporated in both node and branch selection.

am oil
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Finally, major points to be studied further are:

(1) a further investigation of the degree of relaxation used to define the GMP.FIE
[ (2) inclusion of the use of Lagrangian multipliers (as suggested by A. Geoffrion

(G8], et al.) and Gomory all integer cuts (as suggested by G.A. Gorry [G5],

et al.) in the relaxation strategies,

(3) inclusion of the cuts derived from functions related to corner polyhedra

(as suggested by R. Gomory and E. Johnson [G6, G7]) in the implicit enumer-

ation tests,

(4) inclusion of the kth shortest path algorithm (as suggested by B. Fox [F3])

4,f a group problem does not solve tke integer program.

(5) the use of non-optimal dual LP solutions to produce a group problem.

Points (1), (2), and (3) are mentioned by Salkin [SI]. To explain (4)
and (5) in more detail: The kth shortest path algorithm is being incorporated

into the program. White [Wl] shows that the integer program can be solved by

finding the kth shortest path, possibly containing loops, so that a non-negative

solution to the integer program is produced. Fox [F3], however, points out that

White's approach does not perturb the arc lengths, leaving open the possibility

of cycling. Another problem is zero and duplicate columns, resulting from

reducing each updated coefficient column to its fractional part. As described

kthHelsewhere [S5], the k shortest path of a network associated with a group prob-

lem generally does not solve the original integer program when duplicate and/cr

zero columns are droppqd when constructing the group problem. Therefore, a

more complicated procedure is required. Our procedure repeatedly uses the kth

shortest path as in [S5]. Conmputational studies are being made to test this

procedure.

Another interesting thought is the use of non-optimal dual LP solutions

to produce a group problem. In order to generate a group problem, the cost row

I
I

.-



c CBB- N - cN must be nonnegative. If we use the dual simplex method, this

condition is always satisfied. Thus, we can use any of the dual feasible solu-

tions. It seems natural that a dual feasible solution which is close to a dual

optimal (hence, primal optimal) solution is preferred. Thls 7uggests using a

dual feasible, not necessarily optimal, solution to construct a group problem

so that the dual feasible solution

(i) corresponds to a basis whose determinant is small

Iii (ii) yields a cyclic group.

Criterion (i) will make the group problem small, and (ii) will allow a simpler

application of the DP or SPA algorithm. Both points allow for a faster solution

V ~of the GMI'. Computational studies are in progress to test this strategy. A

later memorandum will report on these efforts.

!I

!I

a.
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T

1) Constants

Program variable name Usual 'Notations

M m Number of rows j
N n Number of columns of the original problem

S]NnNumber of rows
NG Number of columns of the group problem

ND Idet BI Absolute value of the determinant of basis B.
NDD (-NO(J)) The ordeE of the cyclic subgroup generated

by the j column of the group problem.

2) Arrays

NA(J,I) a Coefficient matrix1
L NB(1) bI Right hand side ~ of the original problem

NC(J) cj Costs

NAB(J,I) Basis of LP optimal solution.
NBl(J,I) Basis inverse (fractions are cleared by

multiplying by :1D = Idet BI).
NXB(J) Indices of basic variables

NAL (J, I) aij Coefficient matrixi o

NBE(I) =a Right hand side J
' NCB (J) cj Costs

NO(J) (=NDD) The order of the cyclic subgroup generated
by the h column of the group problem.

MB(1 ii generated by the SNF.

NXSOL Solution for the group problem.
NF(K,NT) f(k,g) DP table) ,
JJ (K,NT,L) J(k,g,) DP table (K=I,2)

3) Working Indices C

NT - 1, ND (or NDD) For group elements.
K or NGG or J For columns of the group problem.
I For rows of the group or original problem.
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I lk APPENDIX It: SOME COMMENTS ON THE kth SHORTEST PATH ALGORITHM

i: ~i As mentioned earlier, an alternate to the enumeration is an algorithm

which seeks the smallest shortest route for which XB > 0. A kth shortest path

I algorithm may be used. There are two types of kth shortest paths problems.

The first is to find the k shortest paths from the origin to the sink in which

loops are allowed, the second, in which loops are not allowed. We must use the

first Lype, since the smallest shortest route for which x > 0 may contain
B -t kth

loops [Sl]. Fox [F3] developed a k shortest path algorithm which can be applied

to the group problem, but no computational comparison among alternative strategies

is available. Other kth shortest path algorithms with loops are in Hoffman and

Parley [H3] (1959), Bellman and Kalaba [Bl] (1960), and Sakarovitch [S4] (1966).
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